Spring 2017 MATH5012

Real Analysis II

Exercise 5

- (1) Let $f \in L^1(\mathbb{R}^1)$ and $g \in L^p(\mathbb{R}), p \in [1, \infty]$.
 - (a) Show that Young's inequality also holds for $p = \infty$.
 - (b) Show that equality can hold in Young's inequality when p = 1 and ∞, and find the conditions under which this happens.
 - (c) For $p \in (1, \infty)$, show that equality in the inequality holds only when either f or g is zero almost everywhere.
 - (d) For $p \in [1, \infty]$, show that for each $\varepsilon > 0$, there exist $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$ such that

$$||f * g||_p > (1 - \varepsilon) ||f||_1 ||g||_p$$
.

(2) Show that for integrable f and g in \mathbb{R}^n , for a.e x,

$$\int f(x-y)g(y)\,dy = \int g(x-y)f(y)\,dy.$$

(3) A family $\{Q_{\varepsilon}\}, \varepsilon \in (0, 1)$ or a sequence $\{Q_n\}_{n \ge 1}$ is called an "approximation to identity" if (a) $Q_{\varepsilon}, Q_n \ge 0$, (b) $\int Q_{\varepsilon}, \int Q_n = 1$, and (c) $\forall \delta > 0$,

$$\int_{|x| \ge \delta} |Q_{\varepsilon}|(x) \, dx \to 0 \text{ as } \varepsilon \to 0 \text{ or}$$
$$\int_{|x| \ge \delta} |Q_n|(x) \, dx \to 0 \text{ as } n \to \infty.$$

Verify that

(i)
$$P_y(x) = \frac{1}{\pi} \frac{y}{x^2 + y^2}, x \in \mathbb{R}; y \to 0$$

(ii) $H_t(x) = \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{|x|^2}{4t}}, x \in \mathbb{R}^n, t \to 0,$
(iii) $\frac{1}{2\pi} F_k(x) = \begin{cases} \frac{1}{2\pi n} \frac{\sin^2 \frac{kx}{2}}{\sin^2 \frac{x}{2}}, & |x| \le \pi, \\ 0, & |x| > \pi, \end{cases}, x \in \mathbb{R}, k \to \infty$

are approximations to identity.

- (4) Let f be a continuous function in \mathbb{R}^n . Then $f * Q_{\varepsilon} \to f$ for any approximation to identity Q_{ε} (uniform in compact sets).
- (5) Let $f \in L^1(\mathbb{R}^n)$ and x a Lebesgue point of f. Show that $f * Q_{\varepsilon}(x) \to f(x)$ as $\varepsilon \to 0$.