Spring 2017 MATH5012

Real Analysis II

Exercise 5

(1) Let $f \in L^{1}\left(\mathbb{R}^{1}\right)$ and $g \in L^{p}(\mathbb{R}), p \in[1, \infty]$.
(a) Show that Young's inequality also holds for $p=\infty$.
(b) Show that equality can hold in Young's inequality when $p=1$ and ∞, and find the conditions under which this happens.
(c) For $p \in(1, \infty)$, show that equality in the inequality holds only when either f or g is zero almost everywhere.
(d) For $p \in[1, \infty]$, show that for each $\varepsilon>0$, there exist $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R})$ such that

$$
\|f * g\|_{p}>(1-\varepsilon)\|f\|_{1}\|g\|_{p} .
$$

(2) Show that for integrable f and g in \mathbb{R}^{n}, for a.e x,

$$
\int f(x-y) g(y) d y=\int g(x-y) f(y) d y
$$

(3) A family $\left\{Q_{\varepsilon}\right\}, \varepsilon \in(0,1)$ or a sequence $\left\{Q_{n}\right\}_{n \geq 1}$ is called an "approximation to identity" if (a) $Q_{\varepsilon}, Q_{n} \geq 0,(\mathrm{~b}) \int Q_{\varepsilon}, \int Q_{n}=1$, and (c) $\forall \delta>0$,

$$
\begin{aligned}
& \int_{|x| \geq \delta}\left|Q_{\varepsilon}\right|(x) d x \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \text { or } \\
& \int_{|x| \geq \delta}\left|Q_{n}\right|(x) d x \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Verify that
(i) $P_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}, x \in \mathbb{R} ; y \rightarrow 0$
(ii) $H_{t}(x)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{4 t}}, x \in \mathbb{R}^{n}, t \rightarrow 0$,
(iii) $\frac{1}{2 \pi} F_{k}(x)=\left\{\begin{array}{ll}\frac{1}{2 \pi n} \frac{\sin ^{2} \frac{k x}{2}}{\sin ^{2} \frac{x}{2}}, & |x| \leq \pi, \\ 0, & |x|>\pi,\end{array}, x \in \mathbb{R}, k \rightarrow \infty\right.$ are approximations to identity.
(4) Let f be a continuous function in \mathbb{R}^{n}. Then $f * Q_{\varepsilon} \rightarrow f$ for any approximation to identity Q_{ε} (uniform in compact sets).
(5) Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and x a Lebesgue point of f. Show that $f * Q_{\varepsilon}(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0$.

